查看: 157|回复: 0
打印 上一主题 下一主题

[数据分析基础] 初学者:fMRI数据分析处理原理及方法2 [复制链接]

Rank: 1

水晶
23
心级
6
精华
0
主题
2
帖子
2
跳转到指定楼层
楼主
发表于 2019-7-8 18:51:47 |只看该作者 |倒序浏览
fMRI数据分析处理原理及方法(2)

二、功能图像数据的处理


1. 校正(Re-alignment)。
头部运动的校正是一个理想的单体 (Subject)单模态(Modality)配准,常基于刚体运动模型,迭代计算平移、旋转参数,使参考图像(通常为时间序列的第一幅)与后续序列图像之间的不匹配程度最小化,实现所有时间序列图像的配准。三维空间校正选用三个方向的平移与三个坐标轴的旋转6个参数对头部刚体模型进行描述;三维配准时还需要考虑每个脑体积中(TR时间内)头部运动的影响,以二维配准方法分别校正每一幅图像。Friston强调了基于自动回归移动平均模型(Autoregistration Moving Average ,ARMA)的重要性,可以消除对象自旋激励历史中的运动影响。


此外还必需注意在EPI多层采集过程中,同脑体积中每层采集时间的轻微差异(数十毫秒)。在组块设计实验时,由于每个任务组块时间持续时间较长(数秒至数十秒),可以不考虑这些时间差异;但在事件相关设计时,任务激发的时间性要求高,就必需对每层采集的不同时间差异进行校正,保证组成每个脑体积的数十层图像在相同时间内完成。常采用Sinc 法插值。


通常每一个实验采集数百至数千幅图像,大量的数据使校正过程非常耗时,某些机器附带商业软件为了提高处理速度,达到实时效果,而舍弃此步骤。快速运动校正算法的开发对实时成像(Real-time imaging)十分有意义 。


2. 配准(Registration)。低分辨率的EPI功能图像经常需要叠加在高分辨率的解剖图像上进行功能区的辨认,通过配准功能激活映射图和解剖图像实现。因Ghost效应及磁敏感效应导致EPI图像的几何及强度变形,需要对变形的图像进行反卷积(Unwrapping)校正。这是一个单体多模态配准。J. Asbnrner等提出联合头部尺寸和形态的贝叶斯最大后估计量(Bayesian Maximum a posterior estimator, MAP)方法,利用中间图像实现多种类型的功能数据和解剖数据的精确配准。但如果进行数据的空间归一化,这些变形也都可解决。


3. 归一化(Normalize)。将检测的功能激活区准确地映射到高分辩率的解剖结构图上是fMRI可视化的关键,功能激活映射图根本不含任何解剖信息,无法和解剖图配准,但功能映射图和功能图像可共享同样坐标系统,故可以先把功能图像与解剖图像配准,将得到的变换应用于功能映射图与解剖像之间。把空间校正产生的平均图像(Mean image)或配准好的解剖图像与预先设计好的标准解剖空间的模板图像(Template image)的卷积参数应用于每一个断层图像(Slice image)。这样就可以保证不同样本、不同模态的图像数据在相同的坐标系统进行评价。对于单样本分析,可以不归一化到标准空间,而是到单独创建的模板上;对于脑占位或梗塞等脑结构明显受损的样本图像,务必不能归一化到正常的模板上,自动算法的线性和非线性转换过程中会抹除所有受损部位的特有信息,使归一失败,对于这样的样本,除了用单独创建的模板外,还可以采用有偿函数遮盖(Cost-function Masking)技术对病变部位进行遮盖处理,然后再归一化到标准空间中以资比较 。归一化的本质是一个多体多模态配准。


Talairach and Tournoux系统是最经典的标准解剖系统 ,数据来自于实体解剖,Talairach and Tournoux系统和Brodmann's分区之间的对应关系现在已颇为详知,文献资料十分丰富。加大拿McGill 大学Montreal Neurological Institute建立的MNI系统,采用305例正常人的MR脑扫描,经过映射到Talairach and Tournoux获得,如着名的软件SPM99,标准模板即采用MNI系统。MNI系统尚无与Brodmann's分区的对应信息资料,MNI系统脑模较Talairach and Tournoux系统稍大,虽然有的使用者把二者对等使用,但最好采取一定的方法进行坐标点互换 。


由于全局的脑血流改变以及扫描硬件不稳定,时间序列图像的平均图像的平均信号强度随时间发生与功能活动无关的改变,使得每次刺激的响应不在同一水平,减少了统计检测功能激活信息效果。需要调整每一副图像使其平均值等于全局的平均值,即时间序列的归一化。


4. 平滑(Smooth)。


对于硬件不稳及生理运动产生的干扰信号,可以通过平滑消除:空间平滑减小MR图像随机噪声、提高信噪比与功能激活数据的检测能力。通过将fMRI数据与一个三维高斯函数进行卷积积分形成一个滤波器,滤波器的平滑范围可用高斯核(Gaussian kernel)的全宽半高(FWHM)来表示。理论上高斯核应该与反应区的尺度一样,但要保证高斯核一定要大于一个体素的尺度,否则将造成数据再采样,使内在分辩下降。信噪比较低时,采用较宽的滤波器,检测到的激活区覆盖较大的范围。多样本对比的样本间分析时, FWHM也要大一些(8mm),以使各样本数据能够投射到共同的功能解剖像上,减少样本间差异。滤波器虽然可以有效地滤掉特定频率的噪声,也会牺牲一部分频率相当的真正BOLD信号。


对于时间序列信号的低频漂移,可以采用与BOLD信号波形相似的滤波器(FWHM=2.8mm),对每个体素的时间序列进行时间平滑;如果用短TR采集功能像,可用频带抑制或最小均方适应滤波器去除与呼吸心跳相关的生理噪声。提高反应体素时间过程的信噪比,增加统计检测信号的能力。


此外,虽然真正的BOLD信号主要源于激活脑组织的毛细血管中的血氧代谢的贡献,但由于大血管的流空流入效应,在非激活区也有大量的脱氧血红蛋白流入,造成信号增高,称为“流入性伪影”,出现在较多引流静脉的皮层区域。低场强机器的伪信号更严重,提高场强可以减少这种大血管效应,SE-EPI序列也可以减少流入效应,对于单层EPI成像,通过增加射频翻转脉冲的作用时间可以限制血流敏感性。但多层EPI则无法满足每层足够长的翻转脉冲时间。有学者通过加权各种组织的统计参数图T对比来减少其影响 。


已有 1 人评分水晶 收起 理由
benpao + 1 赞一个!

总评分: 水晶 + 1   查看全部评分

转发到微博
您需要登录后才可以回帖 登录 | 注册

bottom

Powered by Discuz! X2

© 2001-2011 Template By Yeei. Comsenz Inc.

回顶部